
Mokastudy.tk

CodeCademy - Introduction to Blockchain

Mokastudy.tk

Table des matières
INTRODUCTORY BLOCKCHAIN CONCEPTS ...4

Why Blockchain? ...4

What is Blockchain? ..4

The Blockchain Network..5

Key Terms: ..5

What are Blocks in the Blockchain? ...5

Properties in a Block:...6

Hashing ...6

Key Terms: ..6

The Genesis Block ...7

Key Terms: ..7

Visualizing Blockchain ...7

Let's remember the vocabulary we learned ...7

Block Properties ..8

Diving Deeper into Blockchain...9

Gathering Blockchain Transactions ..9

Key Terms: ..9

Adding More Blocks ..9

Key Terms: ..9

How Hashing Maintains the Blockchain's Integrity... 10

Key Terms: .. 10

Is Hashing Enough to Secure the Blockchain? .. 10

Key Terms: .. 10

Securing the Blockchain Further .. 11

Key Terms: .. 11

Proof-of-Work ... 11

Key Terms: .. 12

Diving Deeper into Proof-of-Work ... 12

Key Terms: .. 12

Blockchain Transactions Review .. 13

Let's review the key terms: .. 13

BUILD YOUR OWN MINI-BLOCKCHAIN! ... 13

Representing Transactions .. 13

Script.py .. 13

Creating Blocks ... 14

Mokastudy.tk

Script.py .. 14

Hashing and SHA-256 .. 14

Script.py .. 14

Script.py output .. 14

Generating Block Hashes ... 15

Script.py .. 15

Creating the Blockchain Class .. 15

Script.py .. 16

Adding Blocks to the Blockchain .. 16

Script.py .. 16

Mokastudy.tk

INTRODUCTORY BLOCKCHAIN CONCEPTS

Why Blockchain?
In 2010, a programmer paid 10,000 Bitcoins for 2 pizzas, roughly worth $30. In 2018, that same

number of bitcoins is estimated at $83 million in value!

The exchange of Bitcoin is possible due to an underlying technology that secures and simplifies

transactions removing the need for a bank or a central authority. Anyone with an internet connection

has the freedom to own and exchange this digital currency. The powerful architecture that drove this

revolution was blockchain. Businesses started to realize the potential of blockchain and are rapidly

mobilizing to understand and implement it. But, what exactly is blockchain and what makes it so

transformative?

After you complete this course, you will have a basic foundation of blockchain principles. You will

also have the opportunity to create your own mini blockchain where you will transform these

concepts into code.

What is Blockchain?
The blockchain is similar to a permanent book of records that keeps a log of all transactions that have
taken place in chronological order.

Let's envision a bank transaction in which there are three parties: the sender, the bank, and the
recipient. In order to ensure that there are no fraudulent transactions, the bank acts as the central
authority between the parties.

The blockchain also logs transactions between senders and receivers, except there is no bank or
central authority. Instead, the blockchain relies on a public network of computers to verify the
transaction. The blockchain is just an accurate, and permanent record of all the transactions that
have happened amongst the members in that blockchain’s network. In this analogy, each block in the
blockchain represents a transaction, and each transaction is connected to the prior transaction to
form the entire connected blockchain.

Key Terms:

 Block: A block is an individual transaction or piece of data that is being stored within the
blockchain.

 Blockchain: A blockchain is a continuously growing list ("chain") of records ("block"), called
blocks, which are linked chronologically and secured using cryptography.

Mokastudy.tk

The Blockchain Network
So how do Blockchain-based applications like Bitcoin and Ethereum validate transactions without a
central authority?

In the blockchain, there are many participants in the network that are constantly checking to ensure
that each transaction is valid. Each participant is a computer that owns a copy of the blockchain.
These participants cross-reference their copy of the blockchain each time a new block is being
introduced. Because this validation depends on multiple participants, the digital record is
“decentralized”.

In order for a new block to be added, 51% of all of the participants in the blockchain network must
verify that the new block is not fraudulent. Once a block has been verified as a valid transaction, it is
added to each participant's copy of the blockchain.

By having the majority of participants validate a new transaction, the blockchain removes the need
for a central authority and automates the completion of transactions, reducing transaction fees while
ensuring a high level of security.

Key Terms:

 Blockchain Network: The blockchain network and blockchain are terms used
interchangeably. They represent the entire blockchain from the structure itself to the
network that it is a part of.

 Decentralization: The concept in which participants work together to validate transactions
without relying on a central authority.

 Participant: A client that owns a copy of the blockchain and verifies transactions across the
network.

What are Blocks in the Blockchain?
Just like bricks are the building blocks of a house, blocks themselves are the building blocks of a
blockchain.

A block contains transaction data and other important details related to the creation of that block,
such as the time when it was created and other unique information. In order to create a block, we
must have a record that we wish to store.

In this lesson, we will be discussing transaction data. This is just one example, but blocks can hold
different types of data depending on what the blockchain is used for. However, at its heart, a block
will always contain a timestamp or the data regarding the time when the block was created. A block
will also always contain a unique hash or a unique code produced by combining all the contents
within the block itself — also known as a digital fingerprint. Lastly, a block will also always contain
a previous hash or a reference to the prior block’s hash. This reference to the prior block is how
blocks chain to one another. We will dive into more details about the hash later. These attributes
about a block are what make it part of a blockchain structure.

Mokastudy.tk

Properties in a Block:

 Timestamp: The time the block is created determines the location of it on the blockchain.
 Transaction Data: The information to be securely stored in the block.
 Hash: A unique code produced by combining all the contents within the block itself — also

known as a digital fingerprint.
 Previous Hash: Each block has a reference to the block prior to its hash. This is what makes

the blockchain unique because this link will be broken if a block is tampered with.

Hashing

Hashing is an application of cryptography that is fundamental to the design of the blockchain. It is a
way to generate a seemingly random, but calculated string of letters and numbers from any input.
This is accomplished by the use of a hash function.

Think of a hash function as a machine that takes an object, such as an apple, and turns it into a
varying combination of letters and numbers, such as “1a432bf”. The output (“1a432bf”) is known as
the hash of the input, the apple. If you give the machine two apples instead of one, it will return a
different hash (such as “26f5ce1”).

There are many types of machines out there, so the resulting hash varies from machine to machine.
Similarly, there are many types of hash functions available. Blockchain uses a cryptographic hash
function, meaning that the output is random but deterministic. This means the same input will
always produce the same hash. That process is one-way, so the output (hash) cannot be used to
produce the original input.

Key Terms:

 Deterministic: The same input will always produce the same output, but that output cannot
produce the original input.

 Hash: A calculated string of letters and numbers produced from a specific input.
 Hash Function: A function that takes in an input of a random size, performs hashing on the

input, and generates a seemingly random output of a fixed size, also known as the hash

Mokastudy.tk

The Genesis Block
To recap, a blockchain is similar to a permanent book of records — it keeps an accurate unchanging
record of all data, or transactions, stored in chronological order. Each block has a reference to the
block's previous hash. This is how blocks are “chained” together. If a block’s contents are tampered
with, the block's hash changes and the chain breaks, making it difficult to successfully tamper with
any one piece of the chain.

Since all blocks in the blockchain have a reference to the previous block, the first block is a little
different than the rest. It is known as the Genesis Block. The problem, however, is that the Genesis
Block does not have a block before it. So it wouldn’t make sense to have a previous hash stored
inside it. To resolve this minor issue, the value of the previous hash is typically hard-coded into the
Genesis Block with the default value of zero.
(https://s3.amazonaws.com/codecademy-content/courses/blockchain/Lesson+1/final_genesis.html)

Key Terms:

 Genesis Block:
The genesis block is the first block on the blockchain and it is typically hard-coded into the
blockchain structure. Being the first block on the blockchain, it does not have a link to a
previous hash.

Visualizing Blockchain
Below is a review of important terms that you may want to study to further solidify your knowledge
on the blockchain.

Let's remember the vocabulary we learned

 Blockchain: A blockchain is an accurate and permanent record of transactions that have been
verified and stored in a chronological sequence.

 Blocks: A block is an individual transaction or piece of data that is being stored within the
blockchain.

 Blockchain Network: The blockchain network and blockchain are terms used
interchangeably. They represent the entire blockchain from the structure itself to the
network that it is a part of.

 Decentralization: The concept in which users work together to validate transactions without
relying on a central authority.

 Participant: A client that owns a copy of the blockchain and verifies transactions across the
network.

 Deterministic: The same input will always produce the same output, but that output will
never produce the original input.

 Hash: A fixed-length string of a varying combination of letters and numbers produced from a
specific input of arbitrary size.

 Hash Function: A function that takes in an input of a random size, performs hashing on this
input, and generates a random output of a fixed size, also known as the hash.

 Genesis Block: The genesis block is the first block on the blockchain and it is typically hard-
coded into the blockchain structure. Being the first block on the blockchain, it does not have
a link to a previous hash.

https://s3.amazonaws.com/codecademy-content/courses/blockchain/Lesson+1/final_genesis.html

Mokastudy.tk

Block Properties

 Timestamp: The time the block is created determines the location of it on the blockchain.
 Data: The information to be securely stored in the block.
 Hash: A unique code produced by combining all the contents within the block itself — also

known as a digital fingerprint.
 Previous Hash: Each block has a reference to the block prior to its hash. This is what makes

the blockchain unique because this link will be broken if a block is tampered with.

Mokastudy.tk

Diving Deeper into Blockchain

Gathering Blockchain Transactions
The magic of blockchain is that it’s a secure digital ledger that records transactions in chronological
order. In this exercise, we’ll explore how blockchain transactions are handled.

As transactions are carried out, they get placed in a special location called the mempool that collects
all these unvalidated transactions. The latest transactions in the mempool are broadcasted to all
blockchain participants.

Each participant collects these transactions into a new block. However, each block can only hold a
limited number of transactions. Therefore, not all transactions can be added to a block at once.

Once a block is full, the next set of transactions will have to wait in the memory pool. At this point,
the block is said to be unconfirmed, and the transactions inside the block are said to be invalidated.

Next, we’ll explore how blocks are added to the blockchain!

Key Terms:

 Transactions: An exchange of value among participants on the blockchain network.
 Participants: Individuals accessing the blockchain network through computers to exchange

value.
 Unconfirmed: Blocks and transactions that are yet to be verified.

Adding More Blocks
The first step in adding blocks is verifying transactions. This means making sure that transactions
haven’t been swapped or duplicated. For simplicity, we will assume that all participants know how to
verify transactions and that they will verify them honestly. As you progress through this lesson, you
will explore how verification really works in later exercises.

The next step is establishing a consensus in the network. In other words, the entire network needs to
agree to the transactions.

Assuming everyone honestly verified the transactions, a random participant broadcasts their block to
the entire network. If more than 51% of the participants agree with the block, a consensus has been
reached, and the block is now said to be confirmed!

However, the network might not agree on the first try. This would happen if someone tried to share
an invalid block. The network would reject the attempt at introducing a fake transaction!

The key takeaway from this exercise is that — as long as the majority of participants verify
transactions honestly, the blockchain remains secure.

Key Terms:

 Consensus: The process of agreeing to the transactions on the blockchain network.

Mokastudy.tk

How Hashing Maintains the Blockchain's Integrity
In the previous lesson, we briefly touched upon the idea of hashing — generating a random string of
characters from a given input. Let’s go a step further and explore why hashing is so fundamental to
the design of the Blockchain.

In a blockchain, each block has a unique hash and a link to the previous block’s hash. If a participant
decides to tamper with a block by modifying the transactions, the block’s unique hash gets changed.
However, the following block does not update to reflect this change — it still points to the previous
block’s hash. Thus, there is a mismatch between hashes and the link between blocks is broken. This
results in an invalid copy of the blockchain.

In this way, the records in the blockchain cannot be altered. In other words, the records are said to
be immutable.

But what if someone tampers with a block and recalculates the hashes for every single block? Does
hashing still guarantee that the blockchain is fully secure? Let’s find out in the next exercise.

Key Terms:

 Hashing: Generating a random string of characters from a given input.
 Immutable: Something whose records can't be changed.

Is Hashing Enough to Secure the Blockchain?
We ended the last exercise on a cryptic note — what if an attacker tampers with a block and then
somehow covers their tracks by recalculating the hash of each subsequent block to make the
blockchain valid once again? Let’s explore this concept through an example.

Let’s say we have three blocks: A, B, and C with hashes X123, Y456, and Z789 that represent the state
of each block. If an attacker tampers with Block A, its contents get changed, so its hash gets changed
— let’s say the hash is changed from X123 to 123X. Block B no longer points to Block A because the
previous hash X123 no longer matches with the new hash 123X. The only way for the attacker to
make the chain valid is by fixing this mismatch. For Block B to point to Block A, its previous hash
needs to be changed from X123 to 123X.

However, this also counts as tampering with Block B’s data. Thus, its hash also gets changed. If the
attacker repeats this process for all subsequent blocks, they will have succeeded in creating a valid
copy of the blockchain!

Key Terms:

 Recalculating Hashes: Replacing the incorrect hash with a "correct" one to validate the chain.

Mokastudy.tk

Securing the Blockchain Further
Believe it or not, the security measures introduced in the previous exercises are not enough to
secure the entirety of the blockchain. There needs to be another layer of security to protect the
blockchain from outside interference. Allowing anyone to tamper with their copy of the blockchain
and trick everyone on the network to update their copies is a big problem.

An additional requirement needs to be introduced that makes it infeasible for someone to tamper
with subsequent blocks and take over the blockchain.

Just like how the bank has an accountant to verify transactions manually, the blockchain has a clever
technique called Proof-of-Work that accomplishes two important goals:

 It makes it difficult for participants to modify blocks by re-calculating hashes.
 It relies on bulletproof cryptography instead of anonymous participants to verify

transactions.

This essentially creates a trustless system and is the main reason why the blockchain is so secure and
powerful. Let’s see how Proof-of-Work actually works in the next exercise.

Key Terms:

 Proof-of-Work: A security feature in blockchain to prevent attackers from easily taking over
the blockchain.

 Trustless: A feature of blockchain that states how the system doesn't rely on any participant
to verify transactions.

Proof-of-Work
Since participants on the blockchain network are anonymous users on their computers, we can’t
trust them to verify transactions honestly. Proof-of-Work does nothing more than introduce an
additional security constraint to verify transactions. This constraint takes the form of a
computationally difficult math problem, which means to say that it takes a lot of time even for the
computer to solve the problem.

Instead of randomly being chosen to broadcast their unconfirmed block, a special group of
participants, also known as miners, now need to solve a problem in order to be eligible to broadcast
their block. The problem, also known as Proof-of-Work, takes the form of a guessing game that
involves the use of hashing.

The hash function that’s most commonly used to create the hash for the block is the SHA-256.
Miners first guess a nonce value, which is then combined with the contents of the block (i.e
transactions, timestamp, hash, and previous hash). They repeat this process until the desired hash is
generated.

The first miner to produce a proof broadcasts their unconfirmed block together with the correct
nonce value. The rest of the network then verifies the calculation. If the majority of the participants
agree, the Proof-of-Work for the block is now complete and the block has now been confirmed! The
network then moves on to work on the next block.

Here’s an example of a simple problem — find a number which, when combined with the
unconfirmed block’s contents, produces a hash whose first four digits equals 0000. Every participant

Mokastudy.tk

uses their computer and a hash function (typically SHA-256) to find a number that generates a
correct hash. Since this a random guessing game, everyone usually starts out with 0 and increases
their guesses until they produce an acceptable hash.

Key Terms:

 Miners: Special participants who calculate the Proof-of-Work to mine new blocks.
 Nonce: A number to be guessed by miners which when combined with the block produces an

acceptable hash.

Diving Deeper into Proof-of-Work
The blockchain participants always consider the longest chain to be the correct one. If someone is
able to create the longest chain of blocks (even if the blocks are fake), the network is forced to
accept the new chain.

The reason for this is simple — the blockchain network assumes that the longest chain has the most
amount of computational work done in finding the Proof-of-Work for each block. Therefore, it is
reasonable for the network to think that the longest chain contains the most proven record of
transactions.

If a dishonest participant decides to tamper with a block, they would have to solve the Proof-of-Work
for each subsequent block in order to introduce the tampered block into the network. This is
computationally infeasible and almost impossible!

Furthermore, while the participant is busy finding the Proof-of-Work for each block, newer blocks are
being added to the blockchain at a faster rate. The participant soon finds out that they are playing a
losing battle against the entire network.

What is the key takeaway from all this? A block gets increasingly more tamper-proof as newer blocks
are added next to it. Proof-of-Work makes it hard to get through the entire blockchain and allow
someone to introduce a fake transaction.

Key Terms:

 Longest Chain: The most trusted chain with the largest amount of computational work done
in calculating the Proof-of-Work.

Mokastudy.tk

Blockchain Transactions Review
You learned about how transactions work in the blockchain and some of the mechanisms that keep a
blockchain valid and secure.

Let's review the key terms:

 Transaction: An exchange of value among participants on the blockchain network.
 Participants: Individuals accessing the blockchain network through computers to exchange

value.
 Unconfirmed: Blocks and transactions that are yet to be verified.
 Consensus: The process of agreeing to the transactions on the blockchain network.
 Hashing: Generating a random string of characters from a given input.
 Immutable: Something whose records can't be changed.
 Recalculating Hashes: Replacing the incorrect hash with a "correct" one to validate the chain.
 Proof-of-Work: A security feature in blockchain to prevent attackers from easily taking over

the blockchain.
 Trustless: A feature of blockchain that states how the system doesn't rely on any participant

to verify transactions.
 Longest Chain: The most trusted chain with the largest amount of computational work done

in calculating the Proof-of-Work.

BUILD YOUR OWN MINI-BLOCKCHAIN!
Representing Transactions
The blockchain is a new way of storing and moving data securely. The data mostly consists of

transactions which include messages exchanged between two parties. Before we start creating our

blockchain, let's think of a way to store a transaction like the one shown below:

amount: 30

sender: Alice

receiver: Bob

In this example, Alice is trying to transfer 30 units of some currency to Bob. This transaction is best
represented in the form of a Python dictionary, with keys for the required fields and values specific
to the transaction. These transactions are all stored inside the mempool, a pool of transactions that
miners reference when selecting the set of transactions they want to verify.

Script.py
/#transaction 1, 2,......

my_transaction = {

 'amount': '5',

 'sender': 'a',

 'receiver': 'b',

}

mempool = [transaction1, transaction2, transaction3, transaction4,

transaction5, transaction6, my_transaction]

block_transactions = [transaction1, transaction2, transaction3] #This will

allow us to prepare the transactions to be added to our future Block

structure.

Mokastudy.tk

Creating Blocks
We could create a bigger dictionary and store our data inside this dictionary. But since blocks can be
represented as objects, let's create a Block Class which we can easily use to create new blocks.

Recall that a Block contains the following properties:

 Timestamp
 Transaction
 Hash
 Previous Hash
 Nonce

Script.py
import datetime library

from datetime import datetime

print current date and time

print(datetime.now())

class Block:

default constructor for block class

 def __init__(self, transactions, previous_hash, nonce = 0):

 self.transactions = transactions

 self.previous_hash = previous_hash

 self.nonce = nonce

 self.timestamp = datetime.now()

Hashing and SHA-256

Script.py
import sha256

from hashlib import sha256

text to hash

text = "I am excited to learn about blockchain!"

hash_result = sha256(text.encode())

print result

print(hash_result.hexdigest())

Script.py output

32ad45b332a7e5869d6d5aac178a1af413b04b206047709ea021df8d4d21ff56

Mokastudy.tk

Generating Block Hashes
Block hashes are used to uniquely identify and maintain the integrity of each block. The SHA-256

algorithm is used to generate the hash of the block using the timestamp, data, and previous hash —

the three properties of our Block class!

Script.py
from datetime import datetime

from hashlib import sha256

class Block:

 def __init__(self, transactions, previous_hash, nonce = 0):

 self.timestamp = datetime.now()

 self.transactions = transactions

 self.previous_hash = previous_hash

 self.nonce = nonce

 self.hash = self.generate_hash()

 def print_block(self):

 # prints block contents

 print("timestamp:", self.timestamp)

 print("transactions:", self.transactions)

 print("current hash:", self.generate_hash())

 def generate_hash(self):

 # hash the blocks contents

 block_contents = str(self.timestamp) + str(self.transactions) +

str(self.previous_hash) + str(self.nonce)

 block_hash = sha256(block_contents.encode())

 return block_hash.hexdigest()

Creating the Blockchain Class
Each computer participant has their own copy of the blockchain. Ideally, each copy of the blockchain
should have the same properties and functionality to add and validate blocks.

We can represent the blockchain as an object. We are using objects for our implementation, because
they offer the flexibility to create specific attributes and methods. Representing it as an object also
allows us to create blockchain instances for each computer participant.

To review, our blockchain contains the following:

 Chain: A list that that holds all the blocks inside the blockchain.
 Unverified Transactions: A list that represents all the unverified transactions before being

passed into a block.
 Genesis Block: A block automatically generated when the blockchain is initialized.

Mokastudy.tk

Script.py
#imports the Block class from block.py

from block import Block

class Blockchain:

 def __init__(self):

 self.chain = []

 self.all_transactions = []

 self.genesis_block()

 def genesis_block(self):

 transactions = []

 previous_hash = "0"

 self.chain.append(Block(transactions, previous_hash))

Adding Blocks to the Blockchain

Script.py
 # Use the script of “creating the block chain”

 # prints contents of blockchain

 def print_blocks(self):

 for i in range(len(self.chain)):

 current_block = self.chain[i]

 print("Block {} {}".format(i, current_block))

 current_block.print_contents()

 # add block to blockchain `chain`

 def add_block(self, transactions):

 previous_block_hash = self.chain[len(self.chain)-1].hash

 new_block = Block(transactions, previous_block_hash)

 self.chain.append(new_block)

Checking for a Broken Chain
Hashing helps to maintain the integrity of the blockchain. In this exercise, we will see this in action.
Let’s write a .validate_chain()method that checks to see if blocks are linked to each other properly.

In order to validate the entire blockchain, we must loop through each of the blocks stored inside the
blockchain itself. Then, we will check through each of the blocks to ensure that the previous hash
value matches with the hash value inside our previous block.

Script.py
 def validate_chain(self):

 for i in range(1, len(self.chain)):

 current = self.chain[i]

 previous = self.chain[i-1]

 if(current.hash != current.generate_hash()):

 print("The current hash of the block does not equal the generated

hash of the block.")

 return False

 if(current.previous_hash != previous.generate_hash()):

 print("The previous block's hash does not equal the previous hash

value stored in the current block.")

 return False

 return True

Mokastudy.tk

Hacking the Chain
Now we can use the code in our previous exercise to spot a broken link. Let’s try tampering with the
contents of the block and see how that creates a mismatch between hash values.

Script.py
from blockchain import Blockchain

new_transactions = [{'amount': '30', 'sender':'alice', 'receiver':'bob'},

 {'amount': '55', 'sender':'bob', 'receiver':'alice'}]

my_blockchain = Blockchain()

my_blockchain.add_block(new_transactions)

my_blockchain.print_blocks()

my_blockchain.chain[1].transactions = 'fake_transactions'

my_blockchain.validate_chain()

Script.py Output
Block 0 <block.Block object at 0x7fe87fd5b7f0>

timestamp: 2019-01-16 12:42:43.977028

transactions: {}

current hash: 4e568cf0ca95a414664db049a0f7fcf6bfe613eb104664a61cef7a4489d1c7da

previous hash: 0

Block 1 <block.Block object at 0x7fe87fd5b828>

timestamp: 2019-01-16 12:42:43.977057

transactions: [{'sender': 'alice', 'receiver': 'bob', 'amount': '30'}, {'sender': 'bob', 'receiver': 'alice',

'amount': '55'}]

current hash: dc372483510e95411e2a8cafee49e99f6eb3119d86302440dc0551c60690fbea

previous hash: 4e568cf0ca95a414664db049a0f7fcf6bfe613eb104664a61cef7a4489d1c7da

The current hash of the block does not equal the generated hash of the block.

Mokastudy.tk

	INTRODUCTORY BLOCKCHAIN CONCEPTS
	Why Blockchain?
	What is Blockchain?
	The Blockchain Network
	Key Terms:

	What are Blocks in the Blockchain?
	Properties in a Block:

	Hashing
	Key Terms:

	The Genesis Block
	Key Terms:

	Visualizing Blockchain
	Let's remember the vocabulary we learned
	Block Properties

	Diving Deeper into Blockchain
	Gathering Blockchain Transactions
	Key Terms:

	Adding More Blocks
	Key Terms:

	How Hashing Maintains the Blockchain's Integrity
	Key Terms:

	Is Hashing Enough to Secure the Blockchain?
	Key Terms:

	Securing the Blockchain Further
	Key Terms:

	Proof-of-Work
	Key Terms:

	Diving Deeper into Proof-of-Work
	Key Terms:

	Blockchain Transactions Review
	Let's review the key terms:

	BUILD YOUR OWN MINI-BLOCKCHAIN!
	Representing Transactions
	Script.py

	Creating Blocks
	Script.py

	Hashing and SHA-256
	Script.py
	Script.py output

	Generating Block Hashes
	Script.py

	Creating the Blockchain Class
	Script.py

	Adding Blocks to the Blockchain
	Script.py

	Checking for a Broken Chain
	Script.py

	Hacking the Chain
	Script.py
	Script.py Output

